#### **NEC 304**

#### **STLD**

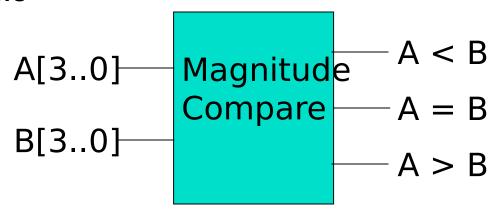
# Lecture 15 Magnitude Comparators and Multiplexers

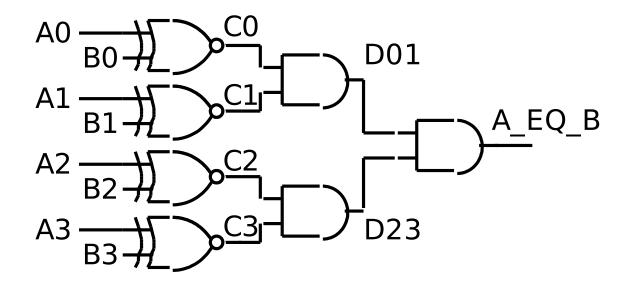
**Rajeev Pandey** 

**Department Of ECE** 

rajeevvce2007@gmail.com

#### **Overview**

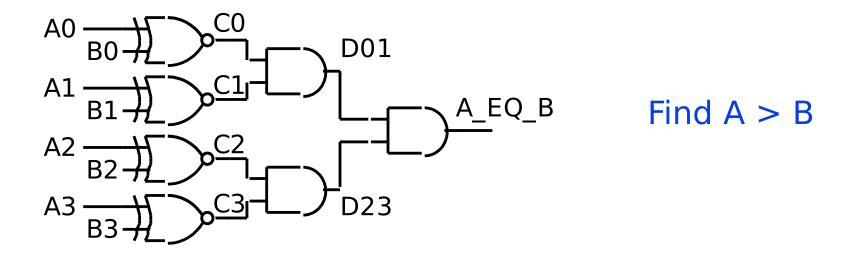

## ° Discussion of two digital building blocks


- Magnitude comparators
  - Compare two multi-bit binary numbers
  - Create a single bit comparator
  - Use repetitive pattern

#### Multiplexers

- Select one out of several bits
- Some inputs used for selection
- Also can be used to implement logic

- The comparison of two numbers
  - outputs: A>B, A=B, A<B</li>
- Design Approaches
  - the truth table
    - 2<sup>2n</sup> entries too cumbersome for large n
  - use inherent regularity of the problem
    - reduce design efforts
    - reduce human errors






How can we find A > B?

How many rows would a truth table have?

$$2^8 = 256$$



Therefore, one term in the logic equation for A > B is A3. B3'

If 
$$A = 1010$$
 and  $B = 1001$  is  $A > B$ ? Why?

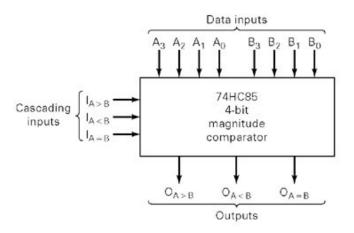
Therefore, the next term in the logic equation for A > B is C3. C2. A1. B1'

#### **Magnitude Comparison**

#### Algorithm -> logic

- $A = A_3A_2A_1A_0$ ;  $B = B_3B_2B_1B_0$
- A=B if A<sub>3</sub>=B<sub>3</sub>, A<sub>2</sub>=B<sub>2</sub>, A<sub>1</sub>=B<sub>1</sub>and A<sub>1</sub>=B<sub>1</sub>

#### $^{\circ}~$ Test each bit:


- equality: x<sub>i</sub>= A<sub>i</sub>B<sub>i</sub>+A<sub>i</sub>'B<sub>i</sub>'
- (A=B) =  $x_3x_2x_1x_0$

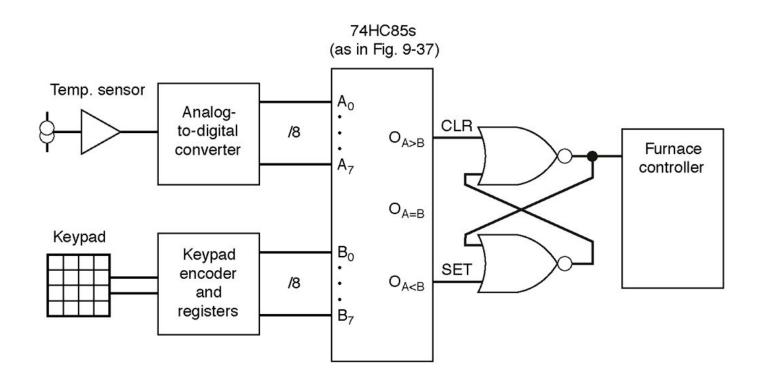
#### More difficult to test less than/greater than

- (A>B) =  $A_3B_3'+x_3A_2B_2'+x_3x_2A_1B_1'+x_3x_2x_1A_0B_0'$
- (A<B) =  $A_3'B_3+x_3A_2'B_2+x_3x_2A_1'B_1+x_3x_2x_1A_0'B_0$
- Start comparisons from high-order bits

#### Implementation

•  $x_i = (A_i B_i' + A_i' B_i)'$ 




TRUTH TABLE

| COMPARING INPUTS                                                                                               |                                 |                                 | CASCADING INPUTS                |                     |                       | OUTPUTS     |                     |             |                  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------|-----------------------|-------------|---------------------|-------------|------------------|
| A <sub>3</sub> , B <sub>3</sub>                                                                                | A <sub>2</sub> , B <sub>2</sub> | A <sub>1</sub> , B <sub>1</sub> | A <sub>0</sub> , B <sub>0</sub> | I <sub>A&gt;B</sub> | I <sub>A &lt; B</sub> | $I_{A-B}$   | O <sub>A&gt;B</sub> | $O_{A < B}$ | O <sub>A=B</sub> |
| A <sub>3</sub> >B <sub>3</sub>                                                                                 | ×                               | X                               | X<br>X                          | X                   | X                     | X           | Н                   | L           | L                |
| 43 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b3<> | X                               | X                               | X                               | X                   | X                     | X           | L                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 > B_2$                     | X                               | X                               | X                   | ×                     | X           | H                   | L           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 < B_2$                     | X                               | Х                               | X                   | X                     | X           | L                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 > B_1$                     | ×                               | X                   | X                     | X           | Н                   | L           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | A1 < B1                         | X                               | X                   | ×                     |             | L                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 > B_0$                     | X                   | ×                     | X<br>X<br>X | Н                   | L           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 < B_0$                     | X                   | X                     | X           | L                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 = B_0$                     | Н                   | L                     | L           | Н                   | L           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 = B_0$                     | L                   | Н                     | L           | L                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 = B_0$                     | X                   | ×                     | Н           | L                   | L           | H                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 = B_0$                     | L                   | L                     | L           | H                   | Н           | L                |
| $A_3 = B_3$                                                                                                    | $A_2 = B_2$                     | $A_1 = B_1$                     | $A_0 = B_0$                     | Н                   | Н                     | L           | L                   | L           | L                |

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

- Real-world application
  - Thermostat controller



#### **Multiplexers**

- Select an input value with one or more select bits
- ° Use for transmitting data
- Allows for conditional transfer of data
- Sometimes called a mux

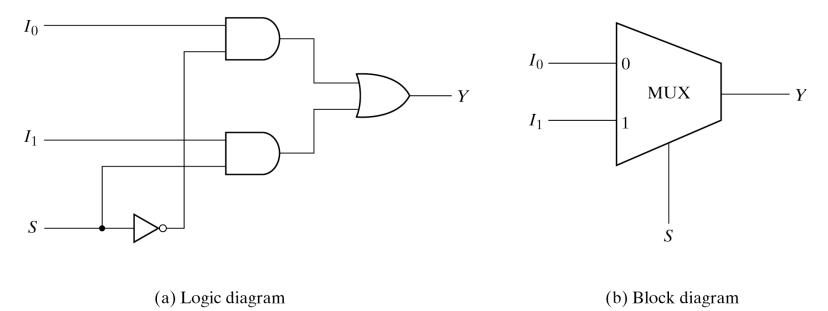
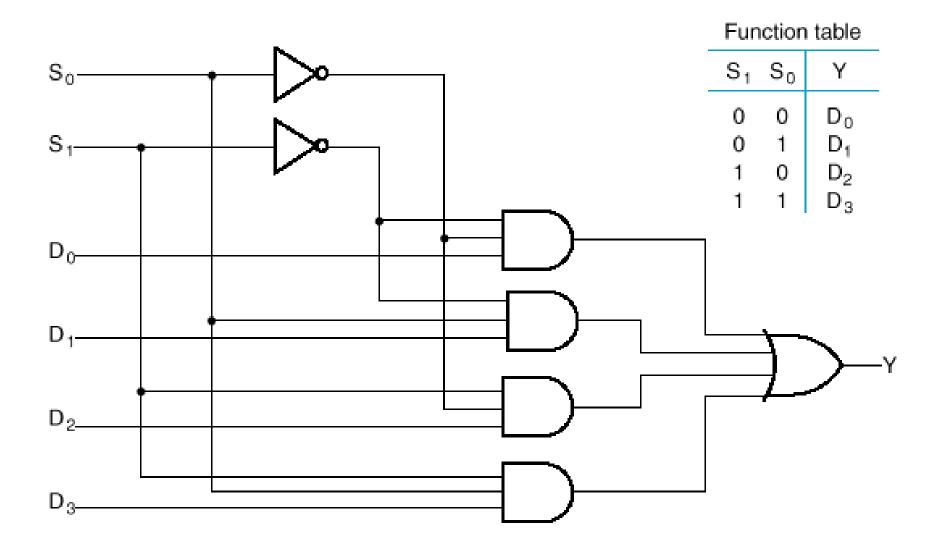
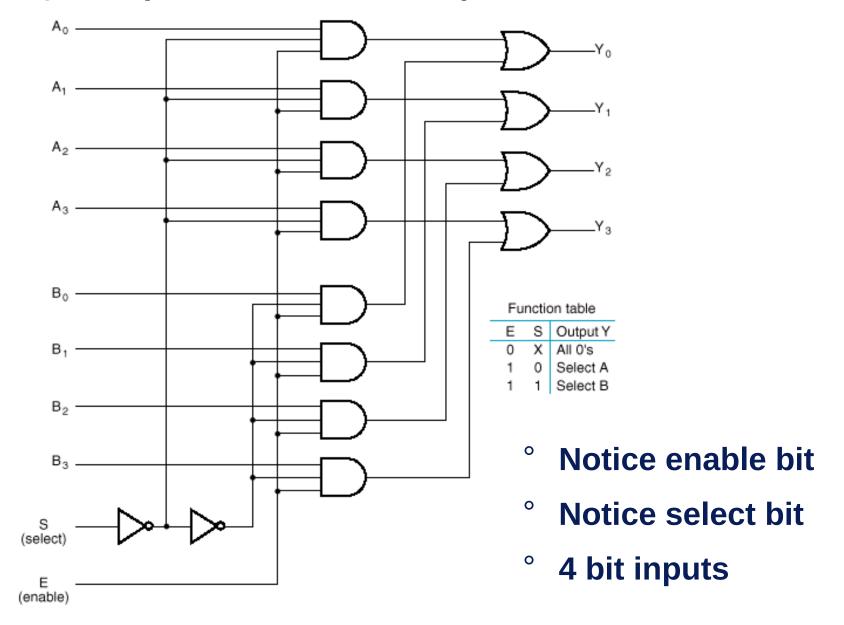
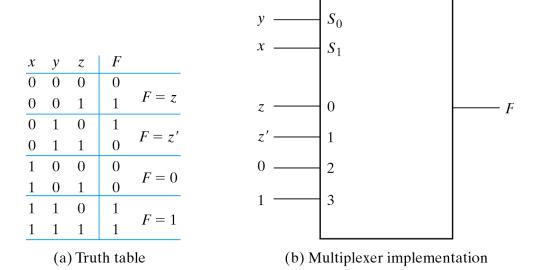





Fig. 4-24 2-to-1-Line Multiplexer

## 4- to- 1- Line Multiplexer



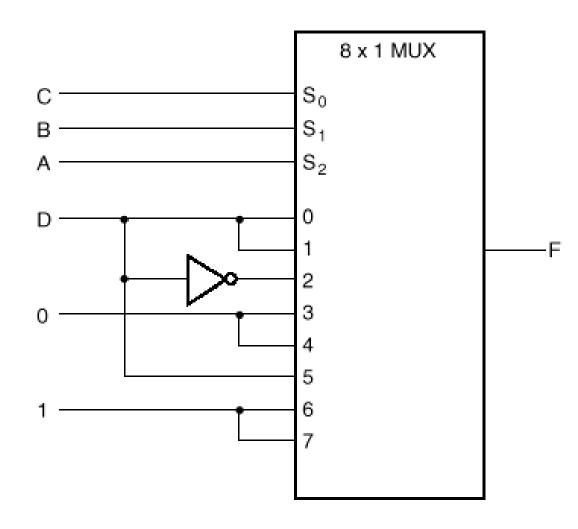

#### **Quadruple 2-to-1-Line Multiplexer**



#### Multiplexer as combinational modules

- Connect input variables to select inputs of multiplexer (n-1 for n variables)
- Set data inputs to multiplexer equal to values of function for corresponding assignment of select variables

Using a variable at data inputs reduces size of the multiplexer




 $4 \times 1 \text{ MUX}$ 

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

## Implementing a Four- Input Function with a Multiplexer

| Α | В | С | D | F |                    |
|---|---|---|---|---|--------------------|
| 0 | 0 | 0 | 0 | 0 | F = D              |
| 0 | 0 | 0 | 1 | 1 | FED                |
| 0 | 0 | 1 | 0 | 0 | F = D              |
| 0 | 0 | 1 | 1 | 1 | 1 - 0              |
| 0 | 1 | 0 | 0 | 1 | $F = \overline{D}$ |
| 0 | 1 | 0 | 1 | 0 | 1 - 0              |
| 0 | 1 | 1 | 0 | 0 | F = 0              |
| 0 | 1 | 1 | 1 | 0 | 0                  |
| 1 | 0 | 0 | 0 | 0 | F = 0              |
| 1 | 0 | 0 | 1 | 0 | 0                  |
| 1 | 0 | 1 | 0 | 0 | F = D              |
| 1 | 0 | 1 | 1 | 1 | 1 - 0              |
| 1 | 1 | 0 | 0 | 1 | F = 1              |
| 1 | 1 | 0 | 1 | 1 | ' - '              |
| 1 | 1 | 1 | 0 | 1 | F = 1              |
| 1 | 1 | 1 | 1 | 1 | ' - '              |



#### **Typical multiplexer uses**

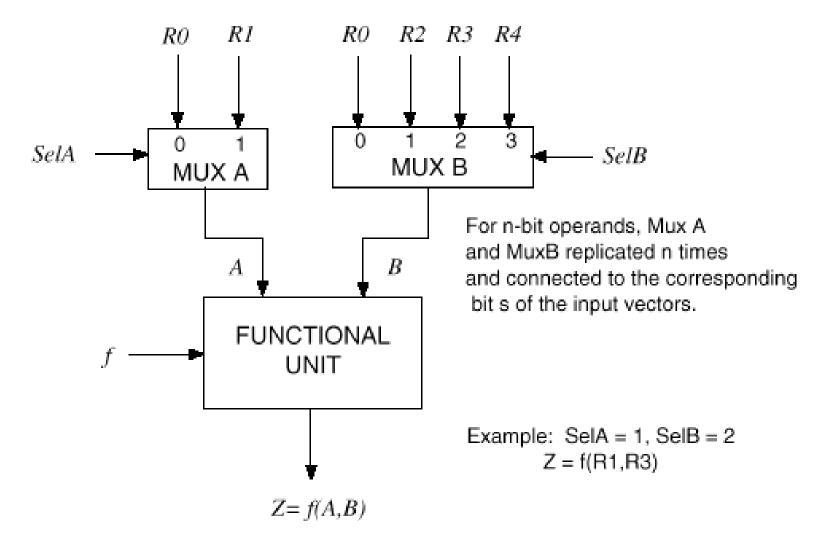
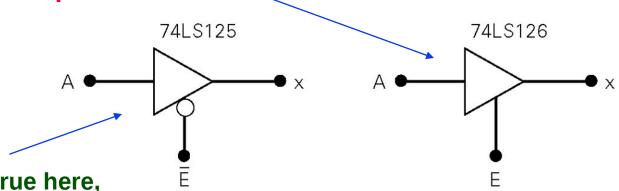
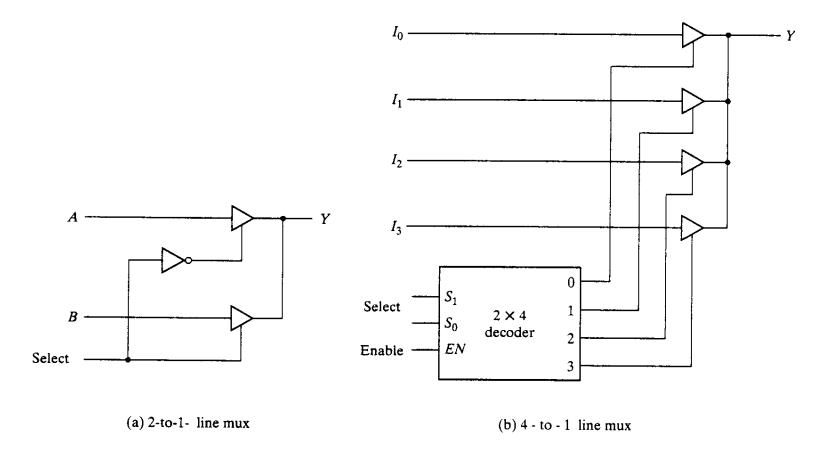




Figure 9.21: Multiplexer example of use.

#### Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)
- If the select input (E) is 0, the three-state gate has no output




Opposite true here,

No output if  $\overline{E}$  is 1

| Ē      | X         | Е   | Х         |  |
|--------|-----------|-----|-----------|--|
| 0<br>1 | A<br>Hi-Z | 0 1 | Hi-Z<br>A |  |
| (a)    |           | (b) |           |  |

#### Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)
- If the select input is low, the three-state gate has no output



#### **Summary**

- Magnitude comparators allow for data comparison
  - Can be built using and-or gates
- ° Greater/less than requires more hardware than equality
- ° Multiplexers are fundamental digital components
  - Can be used for logic
  - Useful for datapaths
  - Scalable
- ° Tristate buffers have three types of outputs
  - 0, 1, high-impedence (Z)
  - Useful for datapaths